
1

white paper

Enea is a global software and services company focused on solutions for communication-driven products. With 40 years of experience Enea is a world leader in the development
of software platforms with extreme demands on high-availability and performance. Enea’s expertise in real-time operating systems and high availability middleware shortens
development cycles, brings down product costs and increases system reliability. Enea’s vertical solutions cover telecom handsets and infrastructure, medtech, industrial automation,
automotive and mil/aero. Enea has 750 employees and is listed on Nasdaq OMX Nordic Exchange Stockholm AB. For more information please visit enea.com or contact us at
info@enea.com.	 www.enea.com

Nigel Day
Polyhedra Product Manager

ENEA POLYHEDRA®:
Polyhedra IMDB and
High-Availability

Integrated data management services are an integral part of any advanced network
equipment software platform. Where large application-level data storage is required,
say for an HLR (Home Location Register) or accounting/billing system, the data
management solution may come in the form of a traditional disk-based relational
database management system (RDBMS).

Many network infrastructure systems,
however, require a separate, higher
performance, in-memory database
solution to manage the dynamic control,
status and configuration information
required for continuous “five nines”
service delivery.

Enea Polyhedra provides a full-
featured, fault-tolerant SQL RDBMS that
is optimized for network control plane
applications with demanding availability,
performance and memory requirements.
Equally important, Polyhedra works
hand-in-glove with the Enea Accelerator
platform, a carrier class software plat-
form for building highly differentiated
network equipment that delivers high-
quality multimedia services over IP
networks with 100% service availability.
Featuring best-in-class networking,
supervision, fault management, and
database management, this flexible,
reusable platform enables equipment
makers to build scalable, upgradeable,
“five nines” equipment that greatly reduces
CAPEX and OPEX for service providers.

High-Availability?
High-availability and fault tolerance
are phrases that are often used rather
loosely, especially when it comes to
software. In practice, it is not software
that is fault tolerant or highly available.

It is the complete system. So these
terms, when applied to software, refer
to the functions and features that the
software must supply in order to facili-
tate the design of an HA system.

Embedded systems requiring high
availability - say ‘five 9s’ (99.999%) or
better of continuous operation – are
typically configured with redundant
cards, power supplies, etc. The individual
components are not designed to be
fault free. Rather, the system as a whole
is designed in a redundant fashion
that allows it to survive the failure of
individual components. Redundancy, in
addition to improving availability, also
enhances flexibility, enabling components
to be swapped out and upgraded with
out upsetting the running system.

While live upgradeability is not
needed in some HA systems (for exam
ple, systems on board aircraft, which are
turned off when the flight is over or the
aircraft is serviced), it is crucial for appli-
cations like telecom where the systems
must operate continuously for years on
end. For example, in telecom infrastruc-
ture equipment, a field upgrade should
not disrupt calls in progress. Similarly,
in an industrial process control systems,
stopping a production line for an
upgrade could cost tens or hundreds of
thousands of dollars of lost production.

There might also be safety issues.
The data handling needs of HA em-

bedded systems often have the following
requirements and characteristics:
n	 Data changes must be fast, but

quickly accessible.
n	 Data must be preserved in the face

of a complete system failure, and
must continue to be available in
the face of a partial failure.

n	 The data structures, queries and
types of changes are relatively static
in a deployed systems, but will
change frequently during application
development, and will usually
change when deploying new
versions of the application.

n	 Field upgrades should not require
scheduled downtime, and the
period of vulnerability to component
failure should be minimized.

n	 The system should minimize the
amount of application coding
needed to handle the HA configur
ation.

n	 The application should be scalable,
avoiding performance killers such
as polling.

2

white paper

Atomicity, Consistency,
Isolation and Durability
For transactional data stores, reference
is often made to the term ‘ACID’, a
mnemonic for Atomicity, Consistency,
Isolation and Durability. Atomicity means
that each transaction either fails (leaving
the data in the pre-transactional state)
or fully commits - no halfway houses.

Consistency says that each trans-
action leaves the data store in a clean
state, with all integrity conditions pre-
served. If not, the transaction is aborted,
leaving the data in its pre-transactional
state. Isolation says that transactions are
independent, each completing before
the next one is started (though judicious
use of locking by the system can avoid
the need for the implementation to be
quite so restrictive).

Durability means that if the data
store says the transaction is complete,
then the data is in a ‘safe’ state and will
survive a subsequent system failure
(within the capabilities of the under-
lying hardware and environment). In
practice, the Durability requirement
can significantly slow down a system
(flushing files to disk can take some
time, for example), so most data stores
allow the level of durability to be tuned,
balancing it against overall system re-
sponsiveness when operating normally.
All true relational database systems
are transactional, and offer a degree of

ACID compliance. Most are also SQL
based, and support on-the-fly schema
changes. However, they may lack suit
able HA characteristics, or be too slow
for use in embedded systems.

Polyhedra IMDB and HA
The Polyhedra in-memory database sys-
tem is designed for use in embedded
systems, where state and configuration
information has to be kept readily acces-
sible, rapidly alterable… and safe. To
ensure fast access, Polyhedra keeps the
data in RAM, but backs it up using a va-
riety of configurable mechanisms, inclu-
ding snapshots, transaction journals, and
even hot standby where appropriate.

To support fault-tolerant configura-
tions, Polyhedra provides a hot standby
mechanism for fault-tolerant pairs. On
start up, the master server gives the hot
standby server a complete copy of the
database (including the schema and
any CL code attached to the database).
Once it is fully running, the master
sends copies of each transaction record
as soon as it commits to the transaction.
This keeps the standby up to date so
that it can take over at a moment’s notice.

The master-standby pair runs under
the control of an external arbitration
mechanism, which controls when fail
over occurs, and decides which is the
master when both come up together
after a cold boot.

When only a few systems are being
installed, a software-only solution is
possible, with a third machine used for
arbitration. More complex configura-
tions, however, usually require a two-
board solution, with a hardware mech
anism to assist in determining which
board should be master. Techniques
vary, but the aim is to provide a reliable
way for one board to know whether it
should be master, and to avoid having
both boards operate in master mode,
even when the data connection between
the two is not working.

Standard Polyhedra release kits
provide sample applications for both
two-board and three-board solutions.
For a 2-board solution, however, the
code would need to be tailored to
interact with the customer-supplied
hardware-based arbitrator.

The Polyhedra client-server protocol
features a client-controlled heartbeat
mechanism, which allows communi-
cation failures to be detected quickly
if the underlying transport is unable to
provide timely information about the
failure of the server. For example, when
TCP/IP is used, a process failure would
normally be detected by the operating
system, which would then close any
open ports. In the case of a complete
board failure, however, it is impractical
to wait for the TCP/IP stack at the other
end to detect the problem, as this could
take up to a half an hour.

The Polyhedra client libraries allow
users to set up fault-tolerant connect
ions to a list of servers. If the connection
to the master server of a fault-tolerant
pair fails (whether reported by the
transport or by the heartbeat mechan
ism described above), the library will
automatically and repeatedly try all
the servers in the list in turn. The delay
between attempts is configurable, as is
the maximum retry count.

Once the connection is re-established
to the current master, the library will
re-establish all open active queries, and
work out the ‘delta’ between the previous
state and the current one. Consequently,

Enea Polyhedra IMDB and HA.

3

white paper

only minimal code changes are needed
to convert a Polyhedra client applica-
tion to one that works with an HA data-
base configuration. The change could
be as simple as changing the code that
opens the initial connection. If needed,
clients can monitor the changing status
of the database connection and fine-
tune the configuration parameters.

Polyhedra allows client applications to
control transaction ‘durability’. Normally,
the server acknowledges a successful
transaction as soon as it has been fully
committed in-store on the master. But
clients can opt to have the response
delayed until the transaction has been
fully logged to disk (where enabled)
and applied to (and acknowledged by)
the standby (if it is running).

Field Upgrades
In continuously-running systems,
there is often the need to change the
software or data structures on the fly,
with no downtime. A simple case in
point would be the addition of a new
type of line card to a telecom rack in a
basestation. The new card may be very
similar to an existing card, but need
additional configuration information,
or want to report additional status
information. The simplest way of hand-
ling this would be for the software on
the new line card to check the central
database on startup. If the columns it
wants are not present in the tables it
uses, it can just create them using the
‘add’ form of the ‘alter table command’.
For example:

alter table linecard add
(config2 integer default 49, status2 integer)

Another approach would be to just
add the columns without checking first
if they exist. No harm will be done if
they already exist, and the type can be
checked when performing queries.

Once these changes have been
made, the new line card can start its
application as normal. Provided other
clients have not used the ‘select *’ form
of query when inspecting the tables,
their active queries and prepared
statements will not be invalidated by
this change, and they will see no inter-
ruption in the database service. All that

needs to be done is to update the soft-
ware on the management computers.
This allows the clients to set the new
configuration columns and monitor the
new status columns.

The heterogeneity built into
Polyhedra, together with its high level
of inter-version interoperability, means
that new line cards do not have to use
the same operating system or proces-
sor type as the cards in the database
server. It doesn’t even have to use the
same release version of the Polyhedra
software.

More complex changes come
in two categories: changes to the
application software on the control
cards or line cards; and changes to the
underlying software used by the appli
cation software. Let us consider these
two cases separately, starting with the
simplest one.

Upgrading the Polyhedra
Database Software
From time to time, it may be necessary
to upgrade the Polyhedra code on a
system to a later version. For example,
a new version of the application soft-
ware may want to take advantage of a
Polyhedra feature that was not present
in the currently used version. Or, the
new version of the application may
incorporate a bug fix that was adversely
affecting the application.

In both cases, the inter-version
interoperability principles enforced by
Polyhedra greatly simplify the upgrades
process. These principles are:
n	 Old (already-built) clients can

connect to the new server.
n	 New clients can connect to older

servers and use the features they
provide. For example, when using
ODBC, client applications can
interrogate the database to find
out the release information and
to determine which features are
implemented.

n	 New servers can read saved data-
base files written by the previous
release of Polyhedra.

n	 New servers can act as standby to a
master running the previous release
of Polyhedra.

Thus, to upgrade the control cards in a
rack with a new version of the Polyhedra
server code, the user simply:
n	 Tells the database server to produce

a snapshot to a named file. This
will cause the current state of the
database to be recorded on both
systems (in case of problems with
the upgrade). In practice, this is
unlikely, but the belt-and-braces
approach should be ingrained in
those developing and installing HA
systems!

n	 Stop the standby card, install the
new version of the Polyhedra server
software, and restart the card. The
database server will be told it was
standby and connect to the master
to obtain a new copy of the data-
base. If the new software used a
different format for the saved data-
base, it would automatically create
a local copy in the new format. The
standby would then be able to
receive transaction logs from the
master, which would be applied to
the local database to keep it in step
with the master.

n	 The standby card would now
be promoted to master, causing
the server on the old master to
relinquish control. The old master
can then be upgraded in turn, and
started up (as a standby, naturally).

If it is necessary to upgrade the client
software on the line cards, this can be
done either before or after upgrading
the server code, depending on which
is more convenient. In many cases,
though, the client software will only
need upgrading in the rare event that
the application is affected by a bug in
the Polyhedra client libraries.

There is no need for all the system
components to use the same version
of Polyhedra. In fact, the client-server
protocol is common to all members
of the Polyhedra DBMS family, so they
share the library code. Thus, there
would be no need to upgrade the code
on the line cards when upgrading the

Enea®, Enea OSE®, Netbricks®, Polyhedra® and Zealcore® are registered trademarks of Enea AB and its subsidiaries. Enea OSE®ck, Enea OSE® Epsilon, Enea® Element, Enea® Optima,
Enea® Optima Log Analyzer, Enea® Black Box Recorder, Enea® LINX, Enea® Accelerator, Polyhedra® Flashlite, Enea“ dSPEED Platform, Enea® System Manager, Accelerating Network
Convergence™, Device Software Optimized™ and Embedded for Leaders™ are unregistered trademarks of Enea AB or its subsidiaries. Any other company, product or service
names mentioned above are the registered or unregistered trademarks of their respective owner. WP48 012009. © Enea AB 2009.

4

white paper

database on the control cards – say,
from from Polyhedra32 to Polyhedra64.

Upgrading the
Application Code
If the new application code needs a
new version of Polyhedra, it may be
simpler to do this first, as a separate
stage, using the procedure outlined
above. Once the system is up and run-
ning the correct version of Polyhedra
on both the master and standby, the
database schema can be updated. The
changes will automatically be applied
on both the master and the standby.

Polyhedra allows schema changes
to be grouped together into a single
transaction using the ‘alter schema’
command. The changes are checked
for correctness before execution, and
if there are any problems (such as an
incompatibility of column names, or
lack of room for temporary structures
when transforming the database), the
database will revert to its earlier state.

Data Management, Part
of Enea’s Total Solution
Data management is a key factor in
the design of any embedded network
system. Polyhedra was developed from

the ground up to address the data
management needs of HA network
applications, combining the benefits of
standard SQL database technology with
a powerful set of features that enhance
reliability, performance, memory effici
ency, and data quality. These features
make Polyhedra ideal for a broad range
of applications, from fault-tolerant
distributed infrastructure systems, to
mobile devices with tight memory and
power constraints.

Enea recognizes the need for inte-
grated data management services as
part of an overall solution for advanced
software platform development. That’s
why Polyhedra works hand-in-glove
with Enea’s operating system and
middleware products. And that’s why
Polyhedra is an integral part of Enea’s
system-level Accelerator platforms.

The Polyhedra family provides an
optimized high-reliability SQL database
solution for a broad range of embedded
applications, whether the priority is
high availability or low memory. Using a
commercial, standards-based database
like Polyhedra simplifies modeling and
design, and requires fewer specialists,
all of which speed development and
reduce development cost. This is parti-

cularly true for distributed applications
that run on heterogeneous hardware
and operating system platforms.

All instances of Polyhedra databases
can communicate transparently with
each other, regardless of version. This
not only simplifies the design of distri-
buted applications that require multiple
RDBMSs, but also provides a seamless
upgrade path that enables equipment
makers to take advantage of the latest
database technology without having
to make substantial changes to their
existing application code.

Data consistency and integrity can
easily create problems over time if not
addressed properly with a suitable data
management solution. The days when
a database was regarded as overhead
for embedded systems are long gone.
With Polyhedra’s unique combination
of reliability, tunable high performance
and other advanced features, data
management need no longer be a
maintenance burden.

